0=-4.9x^2+8x+100

Simple and best practice solution for 0=-4.9x^2+8x+100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-4.9x^2+8x+100 equation:


Simplifying
0 = -4.9x2 + 8x + 100

Reorder the terms:
0 = 100 + 8x + -4.9x2

Solving
0 = 100 + 8x + -4.9x2

Solving for variable 'x'.

Combine like terms: 0 + -100 = -100
-100 + -8x + 4.9x2 = 100 + 8x + -4.9x2 + -100 + -8x + 4.9x2

Reorder the terms:
-100 + -8x + 4.9x2 = 100 + -100 + 8x + -8x + -4.9x2 + 4.9x2

Combine like terms: 100 + -100 = 0
-100 + -8x + 4.9x2 = 0 + 8x + -8x + -4.9x2 + 4.9x2
-100 + -8x + 4.9x2 = 8x + -8x + -4.9x2 + 4.9x2

Combine like terms: 8x + -8x = 0
-100 + -8x + 4.9x2 = 0 + -4.9x2 + 4.9x2
-100 + -8x + 4.9x2 = -4.9x2 + 4.9x2

Combine like terms: -4.9x2 + 4.9x2 = 0.0
-100 + -8x + 4.9x2 = 0.0

Begin completing the square.  Divide all terms by
4.9 the coefficient of the squared term: 

Divide each side by '4.9'.
-20.40816327 + -1.632653061x + x2 = 0

Move the constant term to the right:

Add '20.40816327' to each side of the equation.
-20.40816327 + -1.632653061x + 20.40816327 + x2 = 0 + 20.40816327

Reorder the terms:
-20.40816327 + 20.40816327 + -1.632653061x + x2 = 0 + 20.40816327

Combine like terms: -20.40816327 + 20.40816327 = 0.00000000
0.00000000 + -1.632653061x + x2 = 0 + 20.40816327
-1.632653061x + x2 = 0 + 20.40816327

Combine like terms: 0 + 20.40816327 = 20.40816327
-1.632653061x + x2 = 20.40816327

The x term is -1.632653061x.  Take half its coefficient (-0.8163265305).
Square it (0.6663890044) and add it to both sides.

Add '0.6663890044' to each side of the equation.
-1.632653061x + 0.6663890044 + x2 = 20.40816327 + 0.6663890044

Reorder the terms:
0.6663890044 + -1.632653061x + x2 = 20.40816327 + 0.6663890044

Combine like terms: 20.40816327 + 0.6663890044 = 21.0745522744
0.6663890044 + -1.632653061x + x2 = 21.0745522744

Factor a perfect square on the left side:
(x + -0.8163265305)(x + -0.8163265305) = 21.0745522744

Calculate the square root of the right side: 4.590702808

Break this problem into two subproblems by setting 
(x + -0.8163265305) equal to 4.590702808 and -4.590702808.

Subproblem 1

x + -0.8163265305 = 4.590702808 Simplifying x + -0.8163265305 = 4.590702808 Reorder the terms: -0.8163265305 + x = 4.590702808 Solving -0.8163265305 + x = 4.590702808 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.8163265305' to each side of the equation. -0.8163265305 + 0.8163265305 + x = 4.590702808 + 0.8163265305 Combine like terms: -0.8163265305 + 0.8163265305 = 0.0000000000 0.0000000000 + x = 4.590702808 + 0.8163265305 x = 4.590702808 + 0.8163265305 Combine like terms: 4.590702808 + 0.8163265305 = 5.4070293385 x = 5.4070293385 Simplifying x = 5.4070293385

Subproblem 2

x + -0.8163265305 = -4.590702808 Simplifying x + -0.8163265305 = -4.590702808 Reorder the terms: -0.8163265305 + x = -4.590702808 Solving -0.8163265305 + x = -4.590702808 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.8163265305' to each side of the equation. -0.8163265305 + 0.8163265305 + x = -4.590702808 + 0.8163265305 Combine like terms: -0.8163265305 + 0.8163265305 = 0.0000000000 0.0000000000 + x = -4.590702808 + 0.8163265305 x = -4.590702808 + 0.8163265305 Combine like terms: -4.590702808 + 0.8163265305 = -3.7743762775 x = -3.7743762775 Simplifying x = -3.7743762775

Solution

The solution to the problem is based on the solutions from the subproblems. x = {5.4070293385, -3.7743762775}

See similar equations:

| graphx=40+-1.666666667y | | 3x-44=2 | | y=12x+(-5).3 | | 28-7x=56 | | 8-2(n+1)=-3n+1 | | -3.24+x=-1.8 | | X+24=2x+10 | | 2a+4(a+3)=18 | | 6x+10y=1120 | | 2(x+6)-5=7 | | 50.00+3.75x=80 | | 3*(x+7)=35+2x | | 50.00+3.75=80 | | 2-(4r+7)=-25 | | 14=31t-16t^2 | | 8x+x=8x+6 | | x^2-12x=-23 | | 4k-6b-7k-10b= | | x^2-12x=50 | | log(13x^2-12x-15)=1+2logx | | 18.5p-16.6p-4.3q+2.7q= | | 15d+5=7d+53 | | -18cd^2= | | lg(13x^2-12x-15)=1+2lgx | | -8(1+4r)=152 | | 3x-12=logx | | x^2+25=34 | | 32x+2x^2=30 | | (2d)(11c^2d)= | | -18+3m=-6m | | -31-6x=121 | | 16-3x=-6x+7 |

Equations solver categories